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Recent breakthroughs in artificial intelligence (Al) and machine learning (ML) have ushered in a new era of
possibilities across various scientific domains. One area where these advancements hold significant promise is
model-informed drug discovery and development (MID3). To foster a wider adoption and acceptance of these
advanced algorithms, the Innovation and Quality (IQ) Consortium initiated the Al/ML working group in 2021 with
the aim of promoting their acceptance among the broader scientific community as well as by regulatory agencies.
By drawing insights from workshops organized by the working group and attended by key stakeholders across

the biopharma industry, academia, and regulatory agencies, this white paper provides a perspective from the 1Q
Consortium. The range of applications covered in this white paper encompass the following thematic topics: (i) Al/
ML-enabled Analytics for Pharmacometrics and Quantitative Systems Pharmacology (QSP) Workflows; (ii) Explainable
Artificial Intelligence and its Applications in Disease Progression Modeling; (iii) Natural Language Processing
(NLP) in Quantitative Pharmacology Modeling; and (iv) Al/ML Utilization in Drug Discovery. Additionally, the paper
offers a set of best practices to ensure an effective and responsible use of Al, including considering the context

of use, explainability and generalizability of models, and having human-in-the-loop. We believe that embracing
the transformative power of Al in quantitative modeling while adopting a set of good practices can unlock new
opportunities for innovation, increase efficiency, and ultimately bring benefits to patients.

In recent decades, the utilization of quantitative modeling based
on diverse computational approaches has gained significant prom-
inence in the field of drug discovery and development. These ap-
proaches encompass a range of methodologies, including iz sifico
prediction of absorption, distribution, metabolism, and excretion
(ADME) properties, as well as model-informed drug discovery
and development (MID3)" strategies. MID3 includes providing
quantitative predictions for aspects such as pharmacokinetics,
pharmacodynamics, efficacy and safety end points, and discase
progression. By leveraging these models, researchers can optimize
dosing strategies, inform clinical trial designs, and obtain robust
quantitative assessments regarding drug efficacy and safety. This
paradigm shift toward quantitative modeling has substantially
enhanced the decision-making process, driving more efficient and
effective drug development processes. Although the modeling
of data has been the exclusive domain of human intelligence, in

recent years, the fields of artificial intelligence (AI) and machine
learning (ML) have made significant methodological advance-
ments® * such that these algorithms have the capability to auto-
matically generate predictive computational models, and are being
increasingly utilized to support drug discovery and dt:velopment.5
For instance, pharmacometrics (PMx) as a discipline has matured
over the past 4 decades,® and standard pharmacokinetic (PK),
PK/pharmacodynamic (PK/PD), and exposure-response analyses
have largely become standardized with well-established quality
and reporting guidelines?‘9 However, with multidimensional,
multisource, and multimodal data being generated,lo there is a
need to embrace modern predictive and computationally powerful
analytics as a next step in the evolution of PMx methodologies.6
Just as the significant increase in the adoption of Quantitative
Systems Pharmacology (QSP) in regulatory submissions since
2013 prompted a consortium collaboration to evaluate the state
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of model assessment in the pharmaceutical/biotech industry and
provide recommendations for its advancement,'> we have recog-
nized a similar emerging need within the scientific communities for
AI/ML. There is a growing demand to emphasize the potential of
AI/ML in the realm of drug discovery and development, whereas
also acknowledging and addressing the associated challenges.
Additionally, there is a strong impetus to establish a set of best prac-
tices tailored specifically to the unique characteristics of the health-
care domain, " encompassing relevant use cases and scenarios.

Hence, the Innovation and Qu;ality (IQ) working group
in AI/ML was formed in May 2021 within the International
Consortium for Innovation and Quality in Pharmaceutical
Development (also known as the IQ Consortium). The 1Q
Consortium'? is a not-for-profit organization of pharmaceuti-
cal and biotechnology companies with the mission of advancing
science and technology to augment the capability of member
companies to develop transformational solutions that benefit
patients, regulators, and the broader research and development
community. The IQ AI/ML working group is an expert-based
collaborative group consisting of 14 IQ member companies,1
with the following 3 main aims:

e Identify appropriate AI/ML model assessment methodologies
and promote the adoption of good practices for scientifically
sound and robust adoption of these approaches within drug
discovery and development.

e Identify opportunities for collaborative efforts leveraging AI/
ML techniques for creation and mining of “big data.”

e Increase awareness of AI/ML applications within the pharma-
ceutical industry, academia, and regulatory agencies to foster
their fit-for-purpose use.

Upon its inception, the IQ AI/ML working group conducted a
survey in 2021 to prepare for a US Food and Drug Administration
(FDA) scientific exchange on AI/ML use in the field of clinical
pharmacology. Members were asked to give a high-level overview
of AI/ML activities at their respective companies, including how
AI/ML was used for internal decision making or regulatory inter-
actions, how AI/ML can improve upon existing methodologics,
and the potential challenges for deploying AI/ML more broadly.
The results of this survey were shared with the FDA in October of
2021, and are summarized in Table 1, including a list of key refer-

5,16-28
€nces

identified by the working group.

Although there is a wide array of ML algorithms and technical
concepts of relevance to drug discovery and development, we refer
the reader to the primer.29 Additionally, several review papers have
discussed opportunities and challenges of applying and integrating
AI/ML with the related disciplines of PMx and QSP.***" In this
white paper, we outline and discuss the methodologies and appli-
cations that were covered in an IQ virtual workshop on Machine
Intelligence for Quantitative Modeling in Drug Discovery and
Development Applications,32 as well as an American Conference
on Pharmacometrics on Explainable Machine Learning for Disease
Progression Modeling and Digital Twins, in November 202233

By providing an overview of a broad spectrum of concrete ap-

plications within the biopharmaceutical industry, along with
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discussions on identified opportunities and best practices, this
white paper serves both as a summary of ongoing efforts, as well
as to stimulate new applications and advancements in quantitative
modeling and analytics across the pharmaceutical domain. As illus-
trated in Figure 1, this paper is divided into 4 main parts, cover-
ing the following thematic areas: (i) AI/ML-cnabled analytics and
pharmacometrics workflows; (ii) explainable artificial intelligence
and its application in disease progression modeling; (iii) Natural
Language Processing (NLP) in Quantitative Pharmacology
Modeling; and (iv) AI/ML utilization in drug discovery. Finally,
we end with overall conclusions and a set of recommendations.

PART 1: Al/ML-ENABLED ANALYTICS FOR
PHARMACOMETRICS AND QSP WORKFLOWS

The integration of AI/ML into MID3 approaches like PMx and
QSP provides new opportunities for addressing quantitative and
clinical pharmacology questions, in a totality of evidence mindset
leveraging large and diverse data along with new computational
resources.” >4 Figure 2 illustrates how AI/ML can help advance
MID3."” At level 1, the machine is used as a tool to save time and
labor; it aids carrying out well-defined tasks more efficiently. At
level 2, the machine serves as an assistant to raise the bar of what
conventional models can deal with, thus enabling improvement of
models compared with human intellect alone. At level 3, the ma-
chine is a partner and acts as an innovator pushing at the bound-
aries of what is possible to model. In this section, we review AI/
ML-enabled MID3 analytics and workflows with examples across
these levels.

Al/ML-enabled PMx modeling
The development of PMx models is a step-by-step process towards a
model that is fit-for-purpose. This process generally involves many
repetitive and time-consuming tasks, for instance, identifying the
structural and statistical components of the model. Sibieude ez alt’
explored how model selection could benefit from AI/ML and com-
pared a hybrid genetic algorithm (GA) and artificial neural network
(NN) models for classification or regression in different scenarios
based on simulated PK data. The NN classification model achieved
the most accurate results and the GA was also successful at selecting
plausible models. For the latter, the importance of appropriately de-
fining the fitness function for optimal model selection has emerged,
as well as opportunities to explore combinations of key metrics for
model evaluation beyond the objective function, usually considered
by a modeler during the model building steps (e.g., the number of
parameters, high parameter correlation values, failed convergence,
missing covariance step, and shrinkage). Computational gains were
substantial, especially for NN models which, however, suffered
by overfitting in certain scenarios due to the limited training set
used in the study. This work aimed at first establishing a proof-of-
concept that ML could be used for fast initial selection of models,
followed by conventional PMx modeling for a more efficient work-
flow. Other works demonstrating the benefit of AI/ML use for
PMx model selection have been reported in licerature.”

Another important step in PMx model development is covariate
selection, where standard methods are not well-suited to handle
high-dimensional datasets. Sibieude ez al' compared classical
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Table 1 Summary of 2021 Al/ML working group survey results

Purpose category Al/ML Methodology Added value Challenges Key References
Automation of PK/PD ¢ Tree-based models. Increase automation ¢ Validation of [5,16-20]
modeling ¢ DL language models. of PK/PD modeling methodology.
¢ Neural-ODEs. including selection of ¢ Acceptance by scien-
model structure and tific community and
covariates, and analy- regulatory agencies.
sis report drafting.
Save time and effort
by extracting PK and
DDI data from publica-
tions and reports
using NLP.
Precision medicine and * Tree-based models. Enable the utilization ¢ Limited patient popu- [21,22]
optimizing treatment of high dimensional, lation and insufficient
regimens complex data to high-quality data.
identify key biomark- ¢ Difficult to generalize
ers, covariates, to different patient
optimal treatment populations.
regimens, and patient ¢ Impact of unmeasured
subgroups. confounders.
e Acceptance by the sci-
entific community and
regulatory agencies.
Disease progression mod- e Tree-based models. ¢ Enable improved preci- < Explainability of com- [20,23-26]
eling and digital twins * DL. sion and the utilization plex models.
¢ Neural-ODEs. of high-dimensional, ¢ Generalizability.
complex data. * Acceptance by scien-
tific community and
regulatory agencies.
Causal inference ¢ Tree-based models. ¢ Adjust for confounders  « Validation of [27,28]

¢ SHAP analysis.
¢ Causal forest.
¢ Neural networks.

that may affect dose/
exposure-response
relationships in

methodology

complex, nonlinear

manners

Al, artificial intelligence; DDI, drug-drug interaction; DL, deep learning; ML, machine learning; NLP, Natural Language Processing; ODE, ordinary differential
equation; PK/PD, pharmacokinetic/pharmacodynamic; SHAP, SHapley Additive exPlanations.

methods, such as stepwise covariate modeling (SCM) and condi-
tional sampling for stepwise approach based on correlation tests
(COSSAC), with ML methods (including Random Forest (RF),
NN, and Support Vector Regression). Different scenarios of co-
variate influence were tested based on simulated PK data. Overall,
ML performed similarly to, or better than SCM and COSSAC,
and covariate effect size was the factor that had the most impact on
the method performance. Significant differences were also found
in computational speed, with ML being 30-100 times faster and
able to provide results in a few minutes or hours, depending on the
complexity of the explored scenarios. Hence, in this context, ML
could be useful to provide fast initial screening of high dimensional
covariates sets, followed by conventional approaches to assess clin-
ical relevance of selected covariates and develop the final model.
As an example, this ML-PMx sctting was adopted in the as-
sessment of prognostic and predictive factors of long-term overall
survival (OS) and tumor growth dynamics (TGDs) for the Javelin
Gastric 100 phase III trial of avelumab.*® In this analysis, RF and
SIDEScreen were used to assess baseline and time-varying prog-
nostic and predictive factors for OS (89 covariates) and TGD (52
covariates). Variable importance was assessed based on Boruta, per-
mutation, random splits, and Shapley, and effectively informed the
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integration of relevant baseline and time-varying factors into PMx
models for OS and TGD. Another recently published practical
use case leverages ML methods to assess high dimensional images-
derived radiomics features for integration into modeling of real-
wortld tumor dynamics in patients with melanoma.*”*®

These works demonstrate the successful use of AI/ML meth-
ods to address PMx model selection and covariate assessment.
Furthermore, ML workflows are flexible enough to combine and
handle these model building steps together: for instance, a GA im-
plemented in an R-based NONMEM workbench for identifica-
tion of near optimal models has been recently made available to the

scientific community.”’

Deep learning-enabled PK/PD modeling

The mainstay of modelingactivities for drug development includes
empirical compartmental models built from sparsely sampled PK/
PD datasets. In this respect, AI/ML provides new ways for phar-
macometricians to think about their models. There have been a
number of approaches proposed in using feed-forward NNs#0-43
for modeling of PK(/PD) data. However, these did not tackle
the more complex problem of extrapolating outside the range of
observed data. In fact, the main limitation of such models is that
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Figure 1 Overview of Al/ML for quantitative modeling in drug discovery and development. The nodes indicate the thematic areas and topics
covered by this white paper, whereas the edges indicate the relationships between them. Al, artificial intelligence; DL, deep learning; ML,
machine learning; NLP, natural language processing; PD, pharmacodynamic; PK, pharmacokinetic; PMx, pharmacometrics; QSP, quantitative

systems pharmacology; XAl, explainable artificial intelligence.

Pushing on the
frontier of what

Machine as ; :
Partner is possible

X Improve models
Mac.hlne as compared to human
Assistant intellect alone

Save time

Machine as
and labor

Tool

Figure 2 Machine intelligence to advance MID3 at various levels.
MID3, model-informed drug discovery and development.

they did not explicitly encode causality relationships among dose,
PKs, and PDs and, hence, could not enable robust predictions of
new dosing regimens.

More recent research works tried to tackle this issue by in-
tegrating pharmacological aspects into deep learning (DL) ar-
chitectures. For instance, Liu ez a/.'® relied on long short-term
memory (LSTM) recurrent neural networks (RNNs) to ana-
lyze simulated PK/PD data. Data from a single dosing regimen
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were used to train the model which was then used to predict
the individual PK/PD data for other dosing regimens. Results
suggested that the model could capture temporal dependen-
cies and accurately predict PD profiles in the new settings. It
is worth noting, however, that the authors simulated highly
rich sampling profiles (336 timepoints), which is not a realistic
data setting in standard clinical research. In addition to using
RNNGs, Braem e al.** implemented a pharmacologically rea-
sonable network architecture to improve PK extrapolation to
different dosing schemes. The model was trained on simulated
data and transfer learning was used to adapt the predictions to
new patient groups. The model was also applied to real clinical
data for extrapolation to different dosing schemes. Following a
slightly different approach, Lu ez al."** explored neural ordi-
nary differential equations (neural-ODEs) for PK/PD model-
ing. This is an attempt to merge DL with dynamic systems by
building a pharmacology-informed DL architecture. The key
concept relies on developing a pharmacology-informed encoder-
decoder architecture that encapsulates the fundamental dose-
concentration-effect principle. Such an architecture can enable
model predictions for counterfactual dosing regimens (that is,
simulating dosing regimens different from what was given to the
patient), thus ensuring its generalizability. The importance of
the architecture choice on the latter was further studied by Lu
et al.”” who compared neural-ODE with alternative approaches,
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including LSTM RNN and nonlinear mixed effect models. All
methods performed similarly when the training and test sets
came from the same dosing regimen. However, for predicting a
new treatment regimen, the neural-ODE model outperformed
the other models. Further work is needed to identify the best
architecture for handling covariates in neural-ODE models.

Al/ML-enabled QSP modeling
The integration of QSP and ML has recent been reviewed in a
white paper.31 Within it, the authors identified four categories of
on—going research activity: (1) parameter estimation and extraction,
(ii) model structure, (iii) dimension reduction, and (iv) stochastic-
ity and virtual populations. The working group concluded that
the integration of QSP and ML is still in its early stages of moving
from evaluating available technical tools to building case studies.
In QSP models, the approach is often used to describe complex
physiological phenomena with differential equations. However,
often there are additional mechanisms which are needed to better
describe the available dynamic data. In such scenarios, the adop-
tion of universal differential equations (UDEs)® can prove highly
beneficial, as they offer a versatile mathematical framework that
allows for the integration of information derived from physical
laws and scientific models, along with data-driven ML approaches.
For example, Pocls er 4l showed an application for toxicity pre-
dictions in immuno-oncology, which revolves around predicting
the risk of cytokine release syndrome (CRS) following bispecific
antibody treatment of patients with cancer. A QSP model was de-
veloped to predict CRS with a priming dose strategy. Automated
model discovery was investigated, using data to learn missing terms
of a system of ODEs. They used UDE:s as a framework to explore
this question by adding an NN component to the model. The NN
component acts as a function approximator, thereby enabling the
encapsulation of complex patterns from data. Sparse regression can
be used to recover the equations of the additional term needed to
reproduce the data. Although current methods focus on identify-
ing empirical terms to supplement existing mechanistic equations,
there are substantial future prospects in harnessing the vast bio-
medical knowledge present in the literature to directly generate
these mechanistic equations (e.g., see Part 3 of the paper). The in-
tegration of automated model discovery and mechanistic modeling
has the potential to contribute to more robust and comprehensive
analyses, enabling the extraction of intricate data-driven insights

and enhanced predictivity via QSP models.

Al/ML-enabled regulatory assessment

From a regulatory perspective, AI/ML approaches can be lever-
aged across several areas to support overall drug development and
regulatory efficiency. This includes, but is not limited to: causal
inference47; automation tools for bioequivalence assessment ™ or
facilitating product specific guidance49; business intelligence to
predict submissions of abbreviated new drug applicationsSO’SI'
regulatory equivalence assessment for complex particle size dis-
tribution’?; and multivariate analysis methods to facilitate active
pharmaceutical ingredient sameness assessment.

Of note, the value of adopting AI/ML approaches to mine large

and heterogenous datasets has been shown in recent regulatory
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applications focusing on the assessment of heterogeneous treat-
ment effect (HTE). The HTE analyses focus on examining varying
treatment effects for individuals or subgroups in a population (e.g.,
for personalized medicine). For example, Gong ez al¥’ developed
a causal forest HTE method and evaluated its performance against
the conventional two-step method by simulating scenarios with
different levels of complexity. Causal forest outperformed the con-
ventional method, especially when data were complex (e.g., non-
linear) and high dimensional, thus revealing a promising venue to
advance analytical solutions for real-world HTE analyses.

PART 2: EXPLAINABLE ARTIFICIAL INTELLIGENCE AND ITS
APPLICATIONS IN DISEASE PROGRESSION MODELING

In the previous section, we highlighted the evolution of ML as a
tool, assistant, and partner for supporting decision making and
advancing drug development at multiple levels. However, as ML
models become more complex, it can become increasingly diffi-
cult to understand how certain decisions or predictions are made.
Explainable artificial intelligence (X AI) aims to address ML mod-
els interpretability54 by incorporating human-understandable ex-
planations to output results. As shown in Figure 3, XAI can be
classified into model-specific and model-agnostic approaches.54
Model-specific approaches are tailored to a specific ML model
and leverage its structure or logic to generate explanations that
are then dependent on the model’s design or implementation. For
example, decision trees are model-specific methods that provide
interpretable predictions based on a series of binary rules that
split the input space into regions.55 On the other hand, model-
agnostic approaches can be applied to any ML model, regardless
of its architecture or structure. For example, Local Interpretable
Model-agnostic Explanations (LIME)*® and SHapley Additive ex-
Planations (SHAP)*” are well known and commonly used model-
agnostic methods that provide measures of the importance or
contribution of input features to the model predictions. Another
key aspect of XAI is the use of visualization to help the users
comprehend how ML model predictions are made. As an exam-
ple, heat maps can be used to visualize the important features of a
model, and decision trees can show how a model makes decisions
based on different inputs.

Applications of XAl are of great importance in the field of drug
development and clinical quantitative pharmacology, because
model-informed decisions can have significant impact. Thus, hav-
ing interpretable and explainable predictions becomes critical in
order to build trust and meet fair and ethical principles. In this sec-
tion, we present a few examples recently presented in the literature.

XAl-enabled advancements in disease progression modeling
Discase progression modeling (DPM) focuses on using patient
characteristics and pathophysiologic information to quantita-
tively describe lon§itudinal changes in the disease trajectory as a
function of time.”® Given the increasing importance of DPM in
supporting drug development, the IQ DPM working group has
performed an industry-wide survey and published a white paper to
summarize findings on its use.”’ Currently, DPM is mainly used
for internal decision making and helping to inform clinical trial
design, rather than in regulatory decision making where guidance
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Figure 3 Example of utility of XAl methods to provide interpretable explanations of ML model predictions in order to more transparently inform
clinical pharmacology decisions. eGFR, estimated glomerular filtration rate; LIME, Local Interpretable Model-agnostic Explanations; SHAP,

SHapley Additive exPlanations; XAl, Explainable Artificial Intelligence.

—
Literature Databases Liteérlatur_o:_ Rett.rie\;all A
assification,
Publ/Jed Selection
ClinicalTrials.gov
1L ~
g PK/PD Analysis
Data Extraction Y,
=] " .
LLM Training ¢ Fine-Tuning & . NLP
p L G’ Gevelopment | Pipelines/ === "
Biomedical & Clinical Platforms \ 4 Mechanistic
Large Language Models Modeling
Relation Extraction/) N
BioBERT
PubMedBERT Knowledge Graph .
BioGPT
ChatGPT & c;g\,; Drug Discovery
\_ Y, \S /4 J

Figure 4 Leveraging modern NLP techniques to streamline and improve the efficiency of knowledge discovery and data extraction from
biomedical literature, in order to aid MID3. LLM, large language model; MBMA, Model-Based Meta-Analysis; MID3, model-informed drug
discovery and development; NLP, Natural Language Processing; PD, pharmacodynamic; PK, pharmacokinetic.

on best practices is sought. It has also been highlighted that AT/
ML offers an exceptional opportunity to integrate large, multi-
dimensional data and enable precision medicine development.
Additionally, applying XAI like SHAP can help by providing
novel insights into the underlying mechanisms and factors of dis-
case progression, including latent factors and temporal dynamics
of disease stages.

For instance, Basu ez 2% used an explainable ML approach
to predict future disease activity in patients with multiple sclero-
sis (MS) and identify the most predictive covariates. The analysis

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 115 NUMBER 4 | April 2024

was conducted on a pooled population of 1,935 patients enrolled
in 3 cladribine phase III clinical trials with different outcomes.
Gradient boosting and SHAP methods were used to identify
patients’ covariates for the carly prediction of disease activity, in-
cluding patient baseline characteristics, longitudinal magnetic res-
onance imaging readouts, neurological, and laboratory measures.
The value of incorporating XAI, such as SHAP, with complex
nonlinear ML models clearly stands out in this work to enable an
efficient assessment of covariates importance and contribution to
model predictions at the population and individual patient levels,
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by exploiting typical SHAP plots (e.g., feature importance, sum-
mary plot, and dependence plots). The most predictive covariates
for carly identification of disease activity in patients were found
to be treatment, higher number of new combined unique active
lesion count, higher number of new T1 hypointense black holes,
and higher age-related MS severity score. Interestingly, investiga-
tions of SHAP dependence plot for treatment revealed an exact
match with cladribine exposure-response relationship derived from
a population repeated time-to-event model of qualifying relapsed
previously developed in a more conventional PMx setting.é1 These
results are supportive of the use AI/ML to address model-informed
drug development and clinically focused questions integrating
multimodal and heterogenous data as well multiple end points.
This analysis improves understanding of the mechanism of onset
of disease activity in patients with MS by allowing early identifi-
cation in clinical settings and additionally enabling better patient
monitoring and treatment planning.

Although various approaches exist for DPM (ranging from em-
pirical to quantitative systems modeling) informed ecither by data
alone and/or underlying disease biology,59 AI/ML offers the po-
tential to improve the predictivity of DPM models.®>¢? Although
AI/ML approaches are well-suited for identifying patterns from
complex data, it has been argued that they lack the ability to incor-
porate pharmacologic principles and drug-specific information.”®
However, as discussed earlier in the paper (part 1), recent devel-
opments in neural-ODE® have demonstrated the construction of
pharmacology-informed neural network (PINN) architectures™
and how they can be applied to DPM in geographic atrophy and
oncology.62 In particular, rather than identifying models that sim-
ply describe the longitudinal data, these neural- ODE models use
the concept of learning autonomous dynamic systems from the
disease trajectories. Furthermore, such PINN architectures consist
of an encoder and a decoder network, with an information bottle-
neck in between. It has been demonstrated that dynamic system
techniques can be used to visualize and understand the decoder
that has been learned from data; furthermore, in oncology DPM,
the individual patient “metrics” available at the model bottleneck
can cnable the interpretation of which aspects of the tumor dy-
namics profile are used for survival prediction.62

Unleashing the full potential of XAl

Although X AT has the potential to alleviate the black-box nature
of complex ML models, several challenges still lie ahead to un-
leash XAT’s full potential. The need for standardized definitions
of explainability, communicating the results to non-technical
audiences, as well as integrating explainability into the design of
ML systems are among the major areas for further work.%>%¢ In
fact, XAI requires combining human intuition and systematic
thinking with the ability of ML to process vast amounts of data.
Scientific machine learning is one such approach where domain
knowledge is coupled to flexible ML techniques in the initial
framework design (also termed glass-box) to improve both accu-
racy and explainability,67 but it requires more expertise to cre-
ate. The transparency of ML algorithms is closely linked to their
explainability, and by providing clarity to the model’s internal
workings it can instill greater confidence among stakeholders in
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the reliability and validity of the model’s out:puts.68 However, ex-
plainable ML also involves ensuring ethical and legal principles
are met.”’ Collaboration among data scientists, clinical pharma-
cologists, clinicians, legal, and ethical experts is necessary to de-
velop accurate and X AT systems.

PART 3: NLP IN QUANTITATIVE PHARMACOLOGY MODELING
The exponential growth of biomedical and clinical knowledge
stored in natural language can be overwhelming for scientists,
hindering their ability to utilize the information effectively and
efficiently. NLP is a powerful tool that can revolutionize drug
development by extracting and analyzing information from the
vast amount of biomedical literature. Traditional NLP heavily
focuses on methods that analyze texts based on key words, such
as the tools that were developed to drive PubMed searches. In
the past few years, NLP has been revolutionized by DL meth-
ods, such as the transformer architecture’’ and by the very re-
cent development of large language models (LLMs), such as the
ChatGPT and GPT-4. These modern NLP tools can automate
the identification of relevant papers, extract key information and
causal relationships, generate natural-sounding text almost in-
distinguishable from human-written text, and summarize struc-
tured data from text.

Biomedical literature requires domain-specific models to be
trained on specialized corpus and text data. Several biomedical and
clinical domain-specific LLMs have been developed in the past few
years, such as PubMedBERT,”" BioBERT,”” Med-BERT BERT,"”
and ClinicalBERT.”* Recently, Microsoft released the BioGPT,”
which is a more advanced domain-specific generative transformer
language model pretrained on large scale biomedical literature,
and represents the state-of-the-art development in the field. These
LLMs have demonstrated exceptional performance on various
biomedical NLP tasks, such as relation extraction,75’76 question
answering,77 and document classification.”® These Al models have
great potential in drug research and development applications, in-
cluding understanding underlying biological mechanisms for drug
efficacy and toxicity and identifying drug targets or predicting
drug interactions. By leveraging these advancements, researchers
can more efficiently implement rational drug designs and increase
the probability of success.

Using NLP, particularly LLMs, in drug development applica-
tions presents practical challenges, because the large size of the
models come with high costs (e.g., the training of the GPT-4
model with hundreds of billions of parameters costs over $100 M).
In practice, LLMs are mostly used as foundational models to
power many specific applications and can be fine-tuned using in-
house data or external plugins. However, data security risks must
be considered when exposing such models or external plugins to in-
ternal proprietary patient data. To address data security concerns,
in-house implementations of such LLMs or their smaller special-
ized versions may provide feasible alternative options. In-house
models can take full advantage of the proprietary data behind the
firewall to generate more specific outputs to the internal scientists.
Furthermore, as evident from recent development of AutoGPT,
complete automated use of these “intelligent” AI machines with-
out human supervision can generate wrong results which can be
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risky in drug development. We believe the “human-in-the-loop”
conccpt79 should be considered in any Al-aided drug development.

We illustrate in Figure 4 the methodologies used in NLP-
enabled literature search and selection to showcase their potential
application areas within the context of MID3. In this section, we
review the methodologies and provide examples of NLP-enabled
literature search and selection for model-based meta-analysis
(MBMA) and data extraction for PK/PD analysis and highlight
the use of NLP to construct a detailed knowledge graph of disease
biology from public literature.

NLP-enabled MBMA

Identifying and extracting relevant data from the biomedical liter-
ature for MBMA is a key PMx task in drug development; however,
its workflow is typically a manual, labor intensive, and discase
domain-expert dependent process. It involves initial keyword-
based searches on public literature databases, such as PubMed,
followed by selecting the most relevant papers and extracting data
according to Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelinesso; see Figure S for an
illustration. The final pool may only contain ~ 10-20% literature
from the initial search results, thus, resulting in an inefficient and
unscalable process. As indicated in Figure 5, NLP approaches
present several opportunities for improving MBMA.

One recent approach proposes a pipelin«:81 based on the
PubMedBERT,”! which is a transformer-based biomedical LLM
trained on the whole PubMed dataset. PubMedBERT generates a
tokenized vector representation for each input paper abstract. An

additional in-house model®! of three-layer ranking NN was trained
on top of the PubMedBERT output vector to rank each paper for
its relevance to MBMA. Whereas the PubMedBERT model pa-
rameters are untouched, the 3-layer ranking NN was trained using
an internally labeled MBMA dataset consisting of 14 different dis-
cases, with over 28,000 papers from initial PubMed searches, and
around 3,000 human selected papers in the final MBMA analyses.
The ranking NN was trained to distinguish the human-selected pa-
pers from the rest and generalize the ranking to unseen diseases and
future publications. The pipeline achieved an overall mean recall
rate of 85% and 77% along with an overall mean precision of 31%
and 28% on the task of predicting unseen diseases and future pub-
lications, respectively. Similar performance was achieved on a new
MBMA effort for severe acute respiratory syndrome-coronavirus
2 drug development, a disease area that was not represented in
the initial dataset. The authors suggest that such an NLP-MBMA
pipeline can dramatically reduce the cost (from ~ 5 FTE months to
a few dollars of computing cost) and increase the efficiency (from
months to a few minutes) of the MBMA process by automatizing
literature selection and streamlining the whole process. Higher
performance could be expected with a tool built into a “human-
in-the-loop” system and with the integration of newly available AI
tools, such as ChatGPT.

NLP-enabled early clinical development

NLP technology can help extract PK/PD and clinical related
data from biomedical literature. A web-based tool using NLP
techniques has been implcm(:ntedg2 to extract PK/PD data from
published literature®® with apps for Named Entity Recognition

NLP

Greatest impact for time
savings and acceleration of
decision making through
NLP/AI automation

@%

Sources Collated for
Systematic Review &
Selection

Manual Data Curation
from Selected Sources

Figure 5 The workflow for MBMA consists of a number of manual, labor intensive, and disease domain dependent tasks to identify and select
articles from scientific and medical literature. The arrows shown in orange indicate steps with NLP that have the largest potential impacts. Al,
artificial intelligence; MBMA, Model-Based Meta-Analysis; NLP, Natural Language Processing.
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(NER) relationship extraction available online. In this study, the
authors developed an ML-based method to automatically identify
and characterize scientific publications containing iz vivo PK pa-
rameters, with a dataset of 4,792 PubMed publications labeled by
experts. The final pipeline utilized unigram features and mean
pooling of BioBERT embeddings, achieving an F1 score of 83.8%
on the test set, and identified over 121,000 relevant PubMed pub-
lications. The resulting repository is accessible via a public web
interface (https://app.pkpdai.com) and aims to expedite PK data
search and comparison, thus aiding in ADME dataset curation.

Population, Intervention, Comparison, Outcome and Study
Design (PICOS) data and clinical information are identified and
extracted from textual sources. The effectiveness of NLP tech-
niques has been demonstrated in automatically extracting PICOS
elements from unstructured text.> In addition, NLP has been ap-
plied to clinical data extraction, including medication and adverse
event extraction, to assist pharmacovigilance and adverse drug
event monitoring.gs’%

Although the use of NLP to extract clinical data from published
literature has the potential to significantly enhance the efficiency
and accuracy of evidence-based medicine and clinical research, sig-
nificant challenges remain, including the need for high-quality an-
notated data, domain-specific knowledge, the potential for bias in
the training data and ultimately the need to identify and extract the
relevant data for subsequent modeling. Further developments in
NLP techniques addressing these challenges can enable the wide-
spread adoption of NLP in biomedical and drug research.

NLP-enabled knowledge graphs

In recent years, the integration of NLP techniques has revolu-
tionized the construction of biomedical knowledge graphs (KGs),
paving the way for its diverse applications in drug discovery and
development. Santos ez al¥ used a KG to interpret clinical pro-
teomics data for dru§ target identification and drug repurposing.
Erdengasileng ez al® proposed an approach to identify potential
drug-drug interactions with high accuracy. Zhang ez al.®? devel-
oped MatchMixeR, a cross-platform normalization method for
gene expression data integration to identify new drug targets and
potential drug combinations. BioKDE, a KG-based biomedical
search engine and knowledge discovery platform that integrates
data from various biomedical databases, including PubMed, Gene
Ontology, and Reactome, can be used to identify potential drug
targets based on their biological functions and interactions with
other molecules, as well as drug repurposing for different dis-
eases.”’ Additionally, NLP-based KGs can be used to identify po-
tential off-target effects of drugs, thereby helping to develop safer
and more effective drugs.

Construction of biomedical KGs requires accurate NER and
reliable relation extraction. Recent advancements in NLP enabled
the extraction of valuable information from biomedical text with
high accuracy, despite the challenges in identifying and classifying
different entities (e.g., genes, diseases, drugs, and proteins). Tian
et al’’ proposed a transformer-based approach for NER in clin-
ical trial eligibility criteria, which outperformed traditional ML
approaches.
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NLP is important for relation extraction in constructing KGs
reflective of the underlying biological mechanisms in a structured
manner (e.g., drug-disease and gene-disease relationships, and
protein—protein interactions). Yu et al’* proposed a Bayesian
network structure learning method called GRASP, which uses
an adaptive sequential Monte Carlo approach to infer the causal
relationships between genes. GRASP was able to identify causal
relationships between genes that were not previously known,
demonstrating its potential in constructing the biomedical KG.
Looking ahead, LLM NLP applications are poised to become in-
creasingly important in future drug development. However, it is
important to note that these models should be integrated with a
“human-in-the-loop” approach, where human scientists are strate-
gically placed to validate and make crucial decisions. This point will
be further emphasized in the Conclusion and Recommendation
section of this paper.

PART 4: Al/ML UTILIZATION IN DRUG DISCOVERY

In the 1990s, the availability of biological reagents and liquid chro-
matography mass spectrometry dramatically reduced the attrition
of small molecule drugs due to PK considerations. Currently, attri-
tion due to poor clinical exposure is rare, with preclinical toxicol-
ogy, clinical intolerability, or insufficient efficacy being the major
sources of attrition. Reagents, such as microsomes, cryopreserved
hepatocytes, recombinant drug metabolizing enzymes, and cells
overexpressing specific transporters, have enabled drug metabo-
lism and PK departments to generate large quantities of in vitro
ADME data over the last 15-20years. These data serve two spe-
cific functions: first, iz vitro data related to metabolic stability,
plasma protein binding, permeability, efflux, and CYP inhibition
can be used for the design (i.e., prior to synthesis) of small mol-
ecules with superior ADME properties (Figure 6, design cycle),
along with other parameters, such as biochemical and cellular po-
tency and selectivity data; second, archived data can be used to
build ML models to predict these properties (Figure 6, In silico
optimization).

In silico ML models to predict these iz vitro ADME properties,
as well as physicochemical properties, such as lipophilicity and sol-
ubility, have been available and impactful for > 15 years (Figure 6,
multi-parameter optimization); generally, the models use RF or
support vector machine approaches and, more recently, deep NNG.

A recent publication by the 1Q In Silico Working Group”
showed that the availability of a metabolic stability model at
Genentech more than doubled the percentage of compounds that
are metabolically stable. Similarly, the availability of a solubil-
ity model at AstraZeneca and a time-dependent CYP inhibition
model at Eli Lilly significantly increased the percentage of com-
pounds with desirable propertics.93 As the amount of data contin-
ues to increase steadily, the quality of the predictions as well as the
domain of applicability (DA) will improve, and models to predict
in vivo PK in preclinical species as well as properties of large mol-
ecules have become available recently. Progress has also been made
in the prediction of potency and toxicity as well. Moreover, many
of these models can be used prior to synthesis to increase the odds
of success and the efficiency of the drug discovery process.
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Figure 6 How in silico models can enhance the design cycle in drug discovery (left) resulting in better and quicker multi-parameter optimization

(right). CL, clearance; PPB, plasma protein binding.

Key considerations for building models in drug discovery
There are more abundant and richer datasets now than ever before
to make improved predictions about a compound’s ADME, PK,
and toxicity properties. However, when building and using AI/
ML models, it is critical to understand what type of i silico model
should be used to solve a particular critical issue in drug discovery,
and what confidence is attached to the model’s predictions based
on the DA and the quality of the input data.

Open access, online databases, such as ChEMBL and PubChem,
can be used to augment experimental data, but these may contain
errors, including chemical structures and biological properties, or
show high variability due to the use of different experimental pro-
tocols. Thus, data curation is needed to ensure high-quality input
data and should include chemical structure and experimental set-
tings. The databases of large pharmaceutical companies are often
reliable sources of high-quality data.

Once an ML model has been built to predict a particular i vitro
or iz vivo end point of relevance to a drug discovery program, it
is necessary to define the DA. The DA is a highly discussed and
well-studied theoretical region of physicochemical, structural, or
biological space that surrounds a model’s descriptors and response,
and it is used to estimate the uncertainty in a model’s prediction
of new compound properties based on the similarity to the com-
pounds used in the training/test set. New methods have been de-
veloped to help with DA analysis, but no AI/ML model should be
a static model, and the DA will change or broaden over time.

A clear understanding of the limitations and variability inher-
ent in the experimental data used to build an ML model, and the
associated DA, should help determine what model to use to help
answer a specific question in a drug discovery program. The deci-
sion to use a local or global 77 silico model** depends on how much
data are available for model construction and how generalizable
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the problem or end point is. Global models attempt to include in-
formation from later stages of drug discovery into carlier stages, are
more practical, and enable extrapolation beyond the current data.
If the global model is updated regularly, it is also possible to in-
corporate relevant local data in a timely manner. Currently, global
over local models are preferred given comparable performance.”*
Choosinga local model can be impractical in the fast-moving drug
discovery process.

When it comes to decision making, the impact and performance
of AI/ML models can vary greatly, and their outcome is usually
combined with additional evidence generated in early drug discov-
ery programs. It is essential to carefully consider the DA and the
quality of data used to the build the 77 sifico model when determin-
ing the weight given to the model in the decision process. The suc-
cess metric for these models should not be their accuracy, but their
ability to increase the probability of success for advancing the drug
discovery project and filling a gap in the decision-making process.
Collaboration with ADME scientists, medicinal chemists, and
toxicologists is essential in understanding the gap in knowledge
and the model applicability. The goal is to bring together different
relevant models across disciplines and refine optimal compound
properties all the way into the clinic.

Advancements in Al/ML-enabled drug discovery

AI/ML models used for predicting ADME properties have dra-
matically improved and they are now being used to predict iz vivo
PK in preclinical species as well as iz vitro ADME end points.
This has led to a preference for advancing candidate molecules
with desirable iz silico predicted properties as opposed to solely
relying on more resource-intensive experimental studies (e.g., P-gp
efflux). New methods, such as multitask deep NNs and transfer
learning, are likely to further improve iz vitro and in vivo end
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point predictions and shorten the time required to reach key com-
pound decision points. In recent years, progress has been made
in utilizing AI/ML for toxicity and large molecule drug develop-
ment, which have lagged the use of AI/ML for predicting ADME
properties for small molecular entities.

For toxicity predictions, it is key to understand the therapeutic
index of a compound, and this requires both improved human PK
and PD (related to the pathology of a discasc) drug discovery pre-
dictions. Advances in AI/ML image analysis are leading to automa-
tion in pathology and an increased application of more advanced
imaging techniques to understand biology. For human PK predic-
tions, recent proof-of-concept work” has shown how AI/ML can
be used to predict specific iz vivo human PK parameters, and can
eventually be used to help design compounds with more optimal
PK properties. Likely, more AI/ML model development and use
for predicting toxic end points will increase in the near future given
new, faster, and more data rich technologies, such as multiplexed
assays and multi-omics, as well as the regulatory requirement for
SEND-compliant data. AI/ML methods are likely the best fit for
rapidly integrating and analyzing these different data types and ul-
timately better understanding toxic drug effects.

Although antibody drug development has historically relied on
more laboratory-based methods, recent advances in microfluidics
technologies and next-generation sequencing have increased the
data available for antibody identification, optimization, and de
novo design in recent ycars.%_98 For example, work led by Prescient
Design (Genentech) has shown how large self-supervised “deep
manifold sampling” can help produce antibody binder sequences
that are stable, well-expressed, and with good drug-like proper-
ties.”” In their work, as sequences are generated, data are fed back
into an active learning framework, which selects sequences that
balance model improvement and model exploitation. Future work
in generating synthetic antibodies using DL can include integra-
tion with high throughput biology methods tuned to antibody
discovery, as well as new methods to integrate structure and ML
frameworks.

In silico models have been successfully incorporated in the drug
discovery process due to their improved quality and DA, with fur-
ther possibilities to progress through deep NNs in combination
with transfer learning and a multitask architecture. Nevertheless,
there are limitations if the synthetic efforts expand into previously
unexplored chemical space associated with, for example, bifunc-
tional degraders and macrocyclic peptides, and reliable prediction
of potency (e.g., virtual screening) and (i vivo) toxicology is still
evolving. Multiparameter optimization tools have been developed,
but the scoring function still requires user input. The adoption of
in silico models is variable, and a user-friendly interface that is incor-
porated effectively in the corporate computational infrastructure
will aid its implementation. Collaboration between computational
scientists and experimentalists is necessary to enable “augmented
design” to enhance the drug discovery process.

CONCLUSIONS AND RECOMMENDATIONS

The field of AI/ML is rapidly evolving and there are significant
advancements being made to support quantitative modeling for
drug discovery and development at various levels (see Figure 2).
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Effective collaboration among industry partners, academia, and
regulatory agencies is essential to fully understand and harness its
potential. In pursuit of this goal, we have organized workshops to
enable scientific exchange between practitioners and compiled our
findings in this white paper. Although AI/ML can unlock many
opportunities, it is important to be cautious when using these ad-
vanced algorithms to avoid deriving biased and nongeneralizable
conclusions from data. Drawing on valuable inputs from industry,
academia, and the FDA, we offer a set of guidelines and recom-
mendations for the appropriate utilization of AI/ML in quanti-
tative modeling:

e Define the context-of-use (COU) and utilize risk-informed
credibility assessment framework for AI/ML applications.
Similar to other quantitative models used to support drug dis-
covery and development, the use of AI/ML should also undergo
credibility assessment depending on the COU,'% whether that
be replacement of a computationally expensive covariate search,
which has low decision consequence, or as part of the patient
enrichment strategy which would have higher decision con-
sequence. The level of model validation would depend on the
model risk entailed, and the appropriate performance metrics
may depend on the COU as well.

o Beware of potential overfitting and hence the difference in pre-
dictions and/or estimates obtained using the training versus the
test sets. Although AI/ML models have high expressive power,
this comes at the expense of overfitting or memorization. The
commonly applied approach of evaluating PMx models on the
whole dataset and drawing inferences thereof should be recon-
sidered in the AI/ML setting. In particular, even if the training
and test sets come from the same distribution (for instance, in
a cross-validation setting), overfitting may result in disparate
findings between the training and test sets.

o Ensure the AI/ML model exhibits sufficient generalizability
outside of the training distribution, depending on its COU.
Due to the expressive power (i.e., the ability to describe a wide
variety of quantitative relationships) of AI/ML models, one can
provide an accurate description of the existing data distribution
while losing the ability to perform well for an external test set
that is outside of the training distribution. For high-risk applica-
tions where generalizability outside of the training distribution
is important, the ability of the model to predict outside of the
training domain should be appropriately assessed and defined.

e To ensure the reproducibility of AI/ML models, it is essential
to implement version control throughout the model’s lifecycle.
A defining feature of AI/ML models is their capacity to en-
hance performance through continuous learning from the ac-
cumulation of data. Consequently, these models often require
periodic or even continuous updates, making version control
a critical aspect of the development process. It is important to
note that version control goes beyond merely creating snapshots
of the model architecture and hyperparameters; it also involves
referencing the training data used to generate the model.

o If possible, apply XAI methods and/or choose model formu-
lations that enhance transparency and explainability. AI/ML
models may entail a large number of decision trees or trainable
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weights, which are not easily interpretable. However, there are
various approaches to improve model explainability. One path
is to use XAl techniques like SHAPY and LIME®® to quantify
how the input features impact model predictions. By evaluat-
ing which are the most predictive features and how they impact
the predictions, one can eliminate spurious effects from the
analysis. For instance, if data has missing values that fall under
the category of Missing Not At Random,'®? one needs to en-
sure that the missingness pattern is not used unintentionally
in the ML model. There are also explicit ways to improve ex-
plainability via the choice of model formulation: for instance,
encoder-decoder NN architectures perform data abstraction by
compressing them through a “bottleneck” laycr.62 By creating
low dimensional embeddings of data that exhibit parsimony in
explaining patient variability, such methodologies can enhance
the ability of the model to be comprehended.

o Ifpossible, incorporate relevant domain concepts into the AI/ML
formalisms to enhance its generalizability. One key difference
in human constructed models versus AI/ML models is that the
former often incorporates key principles that are well-accepted
within the scientific domain of interest, for instance, physics
or pharmacology, whereas the latter is often purely data driven.
However, building AI/ML models that are physics- and/or
pharmacology-informed can significantly improve its generaliz-
ability. An example is geometric DL,'® which leverages concepts,
such as invariance and equivariance, to ensure that the AI/ML
model exhibits symmetries present in the physical tasks at hand.

Approaches such as scientific ML

and pharmacology-informed
neural networks® are other proposals that attempt to reconcile
domain concepts with the data-driven nature of AI/ML.

e Quantify the uncertainty of the AI/ML model predictions via
performing appropriate bootstrap. Although parameter and
prediction uncertainty may often be easily quantifiable in an
analytical fashion in empirical PMx and statistical models, it is
not so for AI/ML models. Nevertheless, confidence intervals of
AI/ML model predictions can still be computed via bootstraps
(i.e., sampling—with—replacement) or other approximations, such
as performing dropouts in the context of NN Quantifying
uncertainty can help better assess the quality of the predictions
and how well they are supported by the existing data.

o If possible, encode causality relationships into the AI/ML
model. In contrast to applications of AI/ML in other technical
fields, for pharmacology/toxicology applications there are often
explicit causal assumptions being made among dose, PK, and ef-
ficacy/safety. If the model architecture does not explicitly take
these into account, it is not guaranteed that the AI/ML model
would extrapolate well outside of the training domain.'”¢?

e Draw a causal diagram to determine which variables should go
into the AI/ML model and which should not. Whereas AI/ML
models can incorporate many more explanatory variables than
alternative approaches, using them can create the temptation of
incorporating all available variables. However, for causal infer-
ence applications, it is well-recognized that the use of AI/ML
algorithms by themselves is not a replacement for the need to
consider which variables should be included (e.g,, as confound-

ers) or left out (c.g., as colliders).!01106:107
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o If possible, use synthetic dataset to demonstrate the soundness
of the proposed AI/ML workflow. In comparison to workflows
for PMx and statistical models, AI/ML methodologies can en-
tail multiple computational steps, including hyperparameter
tuning, model training, model evaluation with validation and
test sets, estimation of confidence intervals, and feature impor-
tance attributions. If proper care is not taken in the sequence of
steps, one can unintentionally introduce biases into the model
predictions and/or inferences, or over- and underestimate the
confidence intervals.'"! By testing the planned AI/ML work-
flow on appropriate synthetic data, one may uncover potential
flaws within the model generation process.

o Involve “human-in-the-loop” where relevant. Depending on
the COU, consideration should be given as to whether and how
human scientists should be strategically placed to validate AI/
ML model findings and make crucial decisions.
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