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Artificial Intelligence for Quantitative Modeling 
in Drug Discovery and Development: An 
Innovation and Quality Consortium Perspective 
on Use Cases and Best Practices
Nadia Terranova1,† , Didier Renard2,† , Mohamed H. Shahin3,†, Sujatha Menon3,†, Youfang Cao4,†, 
Cornelis E.C.A. Hop5,†, Sean Hayes6, Kumpal Madrasi7 , Sven Stodtmann8, Thomas Tensfeldt3 ,  
Pavan Vaddady9 , Nicholas Ellinwood10,*,†  and James Lu11,*,†

Recent breakthroughs in artificial intelligence (AI) and machine learning (ML) have ushered in a new era of 
possibilities across various scientific domains. One area where these advancements hold significant promise is 
model-informed drug discovery and development (MID3). To foster a wider adoption and acceptance of these 
advanced algorithms, the Innovation and Quality (IQ) Consortium initiated the AI/ML working group in 2021 with 
the aim of promoting their acceptance among the broader scientific community as well as by regulatory agencies. 
By drawing insights from workshops organized by the working group and attended by key stakeholders across 
the biopharma industry, academia, and regulatory agencies, this white paper provides a perspective from the IQ 
Consortium. The range of applications covered in this white paper encompass the following thematic topics: (i) AI/
ML-enabled Analytics for Pharmacometrics and Quantitative Systems Pharmacology (QSP) Workflows; (ii) Explainable 
Artificial Intelligence and its Applications in Disease Progression Modeling; (iii) Natural Language Processing 
(NLP) in Quantitative Pharmacology Modeling; and (iv) AI/ML Utilization in Drug Discovery. Additionally, the paper 
offers a set of best practices to ensure an effective and responsible use of AI, including considering the context 
of use, explainability and generalizability of models, and having human-in-the-loop. We believe that embracing 
the transformative power of AI in quantitative modeling while adopting a set of good practices can unlock new 
opportunities for innovation, increase efficiency, and ultimately bring benefits to patients.

In recent decades, the utilization of quantitative modeling based 
on diverse computational approaches has gained significant prom-
inence in the field of drug discovery and development. These ap-
proaches encompass a range of methodologies, including in silico 
prediction of absorption, distribution, metabolism, and excretion 
(ADME) properties, as well as model-informed drug discovery 
and development (MID3)1 strategies. MID3 includes providing 
quantitative predictions for aspects such as pharmacokinetics, 
pharmacodynamics, efficacy and safety end points, and disease 
progression. By leveraging these models, researchers can optimize 
dosing strategies, inform clinical trial designs, and obtain robust 
quantitative assessments regarding drug efficacy and safety. This 
paradigm shift toward quantitative modeling has substantially 
enhanced the decision-making process, driving more efficient and 
effective drug development processes. Although the modeling 
of data has been the exclusive domain of human intelligence, in 

recent years, the fields of artificial intelligence (AI) and machine 
learning (ML) have made significant methodological advance-
ments2–4 such that these algorithms have the capability to auto-
matically generate predictive computational models, and are being 
increasingly utilized to support drug discovery and development.5 
For instance, pharmacometrics (PMx) as a discipline has matured 
over the past 4 decades,6 and standard pharmacokinetic (PK), 
PK/pharmacodynamic (PK/PD), and exposure-response analyses 
have largely become standardized with well-established quality 
and reporting guidelines.7–9 However, with multidimensional, 
multisource, and multimodal data being generated,10 there is a 
need to embrace modern predictive and computationally powerful 
analytics as a next step in the evolution of PMx methodologies.6

Just as the significant increase in the adoption of Quantitative 
Systems Pharmacology (QSP) in regulatory submissions since 
201311 prompted a consortium collaboration to evaluate the state 
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of model assessment in the pharmaceutical/biotech industry and 
provide recommendations for its advancement,12 we have recog-
nized a similar emerging need within the scientific communities for 
AI/ML. There is a growing demand to emphasize the potential of 
AI/ML in the realm of drug discovery and development, whereas 
also acknowledging and addressing the associated challenges. 
Additionally, there is a strong impetus to establish a set of best prac-
tices tailored specifically to the unique characteristics of the health-
care domain,13 encompassing relevant use cases and scenarios.

Hence, the Innovation and Quality (IQ) working group 
in AI/ML was formed in May 2021 within the International 
Consortium for Innovation and Quality in Pharmaceutical 
Development (also known as the IQ Consortium). The IQ 
Consortium14 is a not-for-profit organization of pharmaceuti-
cal and biotechnology companies with the mission of advancing 
science and technology to augment the capability of member 
companies to develop transformational solutions that benefit 
patients, regulators, and the broader research and development 
community. The IQ AI/ML working group is an expert-based 
collaborative group consisting of 14 IQ member companies,15 
with the following 3 main aims:

•	 Identify appropriate AI/ML model assessment methodologies 
and promote the adoption of good practices for scientifically 
sound and robust adoption of these approaches within drug 
discovery and development.

•	 Identify opportunities for collaborative efforts leveraging AI/
ML techniques for creation and mining of “big data.”

•	 Increase awareness of AI/ML applications within the pharma-
ceutical industry, academia, and regulatory agencies to foster 
their fit-for-purpose use.

Upon its inception, the IQ AI/ML working group conducted a 
survey in 2021 to prepare for a US Food and Drug Administration 
(FDA) scientific exchange on AI/ML use in the field of clinical 
pharmacology. Members were asked to give a high-level overview 
of AI/ML activities at their respective companies, including how 
AI/ML was used for internal decision making or regulatory inter-
actions, how AI/ML can improve upon existing methodologies, 
and the potential challenges for deploying AI/ML more broadly. 
The results of this survey were shared with the FDA in October of 
2021, and are summarized in Table 1, including a list of key refer-
ences5,16–28 identified by the working group.

Although there is a wide array of ML algorithms and technical 
concepts of relevance to drug discovery and development, we refer 
the reader to the primer.29 Additionally, several review papers have 
discussed opportunities and challenges of applying and integrating 
AI/ML with the related disciplines of PMx and QSP.2,30,31 In this 
white paper, we outline and discuss the methodologies and appli-
cations that were covered in an IQ virtual workshop on Machine 
Intelligence for Quantitative Modeling in Drug Discovery and 
Development Applications,32 as well as an American Conference 
on Pharmacometrics on Explainable Machine Learning for Disease 
Progression Modeling and Digital Twins, in November 2022.33

By providing an overview of a broad spectrum of concrete ap-
plications within the biopharmaceutical industry, along with 

discussions on identified opportunities and best practices, this 
white paper serves both as a summary of ongoing efforts, as well 
as to stimulate new applications and advancements in quantitative 
modeling and analytics across the pharmaceutical domain. As illus-
trated in Figure 1, this paper is divided into 4 main parts, cover-
ing the following thematic areas: (i) AI/ML-enabled analytics and 
pharmacometrics workflows; (ii) explainable artificial intelligence 
and its application in disease progression modeling; (iii) Natural 
Language Processing (NLP) in Quantitative Pharmacology 
Modeling; and (iv) AI/ML utilization in drug discovery. Finally, 
we end with overall conclusions and a set of recommendations.

PART 1: AI/ML-ENABLED ANALYTICS FOR 
PHARMACOMETRICS AND QSP WORKFLOWS
The integration of AI/ML into MID3 approaches like PMx and 
QSP provides new opportunities for addressing quantitative and 
clinical pharmacology questions, in a totality of evidence mindset 
leveraging large and diverse data along with new computational 
resources.30,34 Figure 2 illustrates how AI/ML can help advance 
MID3.19 At level 1, the machine is used as a tool to save time and 
labor; it aids carrying out well-defined tasks more efficiently. At 
level 2, the machine serves as an assistant to raise the bar of what 
conventional models can deal with, thus enabling improvement of 
models compared with human intellect alone. At level 3, the ma-
chine is a partner and acts as an innovator pushing at the bound-
aries of what is possible to model. In this section, we review AI/
ML-enabled MID3 analytics and workflows with examples across 
these levels.

AI/ML-enabled PMx modeling
The development of PMx models is a step-by-step process towards a 
model that is fit-for-purpose. This process generally involves many 
repetitive and time-consuming tasks, for instance, identifying the 
structural and statistical components of the model. Sibieude et al.17 
explored how model selection could benefit from AI/ML and com-
pared a hybrid genetic algorithm (GA) and artificial neural network 
(NN) models for classification or regression in different scenarios 
based on simulated PK data. The NN classification model achieved 
the most accurate results and the GA was also successful at selecting 
plausible models. For the latter, the importance of appropriately de-
fining the fitness function for optimal model selection has emerged, 
as well as opportunities to explore combinations of key metrics for 
model evaluation beyond the objective function, usually considered 
by a modeler during the model building steps (e.g., the number of 
parameters, high parameter correlation values, failed convergence, 
missing covariance step, and shrinkage). Computational gains were 
substantial, especially for NN models which, however, suffered 
by overfitting in certain scenarios due to the limited training set 
used in the study. This work aimed at first establishing a proof-of-
concept that ML could be used for fast initial selection of models, 
followed by conventional PMx modeling for a more efficient work-
flow. Other works demonstrating the benefit of AI/ML use for 
PMx model selection have been reported in literature.35

Another important step in PMx model development is covariate 
selection, where standard methods are not well-suited to handle 
high-dimensional datasets. Sibieude et al.16 compared classical 
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methods, such as stepwise covariate modeling (SCM) and condi-
tional sampling for stepwise approach based on correlation tests 
(COSSAC), with ML methods (including Random Forest (RF), 
NN, and Support Vector Regression). Different scenarios of co-
variate influence were tested based on simulated PK data. Overall, 
ML performed similarly to, or better than SCM and COSSAC, 
and covariate effect size was the factor that had the most impact on 
the method performance. Significant differences were also found 
in computational speed, with ML being 30–100 times faster and 
able to provide results in a few minutes or hours, depending on the 
complexity of the explored scenarios. Hence, in this context, ML 
could be useful to provide fast initial screening of high dimensional 
covariates sets, followed by conventional approaches to assess clin-
ical relevance of selected covariates and develop the final model.

As an example, this ML-PMx setting was adopted in the as-
sessment of prognostic and predictive factors of long-term overall 
survival (OS) and tumor growth dynamics (TGDs) for the Javelin 
Gastric 100 phase III trial of avelumab.36 In this analysis, RF and 
SIDEScreen were used to assess baseline and time-varying prog-
nostic and predictive factors for OS (89 covariates) and TGD (52 
covariates). Variable importance was assessed based on Boruta, per-
mutation, random splits, and Shapley, and effectively informed the 

integration of relevant baseline and time-varying factors into PMx 
models for OS and TGD. Another recently published practical 
use case leverages ML methods to assess high dimensional images-
derived radiomics features for integration into modeling of real-
world tumor dynamics in patients with melanoma.37,38

These works demonstrate the successful use of AI/ML meth-
ods to address PMx model selection and covariate assessment. 
Furthermore, ML workflows are flexible enough to combine and 
handle these model building steps together: for instance, a GA im-
plemented in an R-based NONMEM workbench for identifica-
tion of near optimal models has been recently made available to the 
scientific community.39

Deep learning-enabled PK/PD modeling
The mainstay of modeling activities for drug development includes 
empirical compartmental models built from sparsely sampled PK/
PD datasets. In this respect, AI/ML provides new ways for phar-
macometricians to think about their models. There have been a 
number of approaches proposed in using feed-forward NNs40–43 
for modeling of PK(/PD) data. However, these did not tackle 
the more complex problem of extrapolating outside the range of 
observed data. In fact, the main limitation of such models is that 

Table 1  Summary of 2021 AI/ML working group survey results

Purpose category AI/ML Methodology Added value Challenges Key References

Automation of PK/PD 
modeling

•	 Tree-based models.
•	 DL language models.
•	 Neural-ODEs.

•	 Increase automation 
of PK/PD modeling 
including selection of 
model structure and 
covariates, and analy-
sis report drafting.

•	 Save time and effort 
by extracting PK and 
DDI data from publica-
tions and reports 
using NLP.

•	 Validation of 
methodology.

•	 Acceptance by scien-
tific community and 
regulatory agencies.

[5,16–20]

Precision medicine and 
optimizing treatment 
regimens

•	 Tree-based models. •	 Enable the utilization 
of high dimensional, 
complex data to 
identify key biomark-
ers, covariates, 
optimal treatment 
regimens, and patient 
subgroups.

•	 Limited patient popu-
lation and insufficient 
high-quality data.

•	 Difficult to generalize 
to different patient 
populations.

•	 Impact of unmeasured 
confounders.

•	 Acceptance by the sci-
entific community and 
regulatory agencies.

[21,22]

Disease progression mod-
eling and digital twins

•	 Tree-based models.
•	 DL.
•	 Neural-ODEs.

•	 Enable improved preci-
sion and the utilization 
of high-dimensional, 
complex data.

•	 Explainability of com-
plex models.

•	 Generalizability.
•	 Acceptance by scien-

tific community and 
regulatory agencies.

[20,23–26]

Causal inference •	 Tree-based models.
•	 SHAP analysis.
•	 Causal forest.
•	 Neural networks.

•	 Adjust for confounders 
that may affect dose/
exposure-response 
relationships in 
complex, nonlinear 
manners

•	 Validation of 
methodology

[27,28]

AI, artificial intelligence; DDI, drug-drug interaction; DL, deep learning; ML, machine learning; NLP, Natural Language Processing; ODE, ordinary differential 
equation; PK/PD, pharmacokinetic/pharmacodynamic; SHAP, SHapley Additive exPlanations.
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they did not explicitly encode causality relationships among dose, 
PKs, and PDs and, hence, could not enable robust predictions of 
new dosing regimens.

More recent research works tried to tackle this issue by in-
tegrating pharmacological aspects into deep learning (DL) ar-
chitectures. For instance, Liu et al.18 relied on long short-term 
memory (LSTM) recurrent neural networks (RNNs) to ana-
lyze simulated PK/PD data. Data from a single dosing regimen 

were used to train the model which was then used to predict 
the individual PK/PD data for other dosing regimens. Results 
suggested that the model could capture temporal dependen-
cies and accurately predict PD profiles in the new settings. It 
is worth noting, however, that the authors simulated highly 
rich sampling profiles (336 timepoints), which is not a realistic 
data setting in standard clinical research. In addition to using 
RNNs, Braem et al.44 implemented a pharmacologically rea-
sonable network architecture to improve PK extrapolation to 
different dosing schemes. The model was trained on simulated 
data and transfer learning was used to adapt the predictions to 
new patient groups. The model was also applied to real clinical 
data for extrapolation to different dosing schemes. Following a 
slightly different approach, Lu et al.19,20 explored neural ordi-
nary differential equations (neural-ODEs) for PK/PD model-
ing. This is an attempt to merge DL with dynamic systems by 
building a pharmacology-informed DL architecture. The key 
concept relies on developing a pharmacology-informed encoder-
decoder architecture that encapsulates the fundamental dose-
concentration-effect principle. Such an architecture can enable 
model predictions for counterfactual dosing regimens (that is, 
simulating dosing regimens different from what was given to the 
patient), thus ensuring its generalizability. The importance of 
the architecture choice on the latter was further studied by Lu 
et al.19 who compared neural-ODE with alternative approaches, 

Figure 1  Overview of AI/ML for quantitative modeling in drug discovery and development. The nodes indicate the thematic areas and topics 
covered by this white paper, whereas the edges indicate the relationships between them. AI, artificial intelligence; DL, deep learning; ML, 
machine learning; NLP, natural language processing; PD, pharmacodynamic; PK, pharmacokinetic; PMx, pharmacometrics; QSP, quantitative 
systems pharmacology; XAI, explainable artificial intelligence.

Figure 2  Machine intelligence to advance MID3 at various levels. 
MID3, model-informed drug discovery and development.
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including LSTM RNN and nonlinear mixed effect models. All 
methods performed similarly when the training and test sets 
came from the same dosing regimen. However, for predicting a 
new treatment regimen, the neural-ODE model outperformed 
the other models. Further work is needed to identify the best 
architecture for handling covariates in neural-ODE models.

AI/ML-enabled QSP modeling
The integration of QSP and ML has recent been reviewed in a 
white paper.31 Within it, the authors identified four categories of 
on-going research activity: (i) parameter estimation and extraction, 
(ii) model structure, (iii) dimension reduction, and (iv) stochastic-
ity and virtual populations. The working group concluded that 
the integration of QSP and ML is still in its early stages of moving 
from evaluating available technical tools to building case studies.

In QSP models, the approach is often used to describe complex 
physiological phenomena with differential equations. However, 
often there are additional mechanisms which are needed to better 
describe the available dynamic data. In such scenarios, the adop-
tion of universal differential equations (UDEs)45 can prove highly 
beneficial, as they offer a versatile mathematical framework that 
allows for the integration of information derived from physical 
laws and scientific models, along with data-driven ML approaches. 
For example, Poels et al.46 showed an application for toxicity pre-
dictions in immuno-oncology, which revolves around predicting 
the risk of cytokine release syndrome (CRS) following bispecific 
antibody treatment of patients with cancer. A QSP model was de-
veloped to predict CRS with a priming dose strategy. Automated 
model discovery was investigated, using data to learn missing terms 
of a system of ODEs. They used UDEs as a framework to explore 
this question by adding an NN component to the model. The NN 
component acts as a function approximator, thereby enabling the 
encapsulation of complex patterns from data. Sparse regression can 
be used to recover the equations of the additional term needed to 
reproduce the data. Although current methods focus on identify-
ing empirical terms to supplement existing mechanistic equations, 
there are substantial future prospects in harnessing the vast bio-
medical knowledge present in the literature to directly generate 
these mechanistic equations (e.g., see Part 3 of the paper). The in-
tegration of automated model discovery and mechanistic modeling 
has the potential to contribute to more robust and comprehensive 
analyses, enabling the extraction of intricate data-driven insights 
and enhanced predictivity via QSP models.

AI/ML-enabled regulatory assessment
From a regulatory perspective, AI/ML approaches can be lever-
aged across several areas to support overall drug development and 
regulatory efficiency. This includes, but is not limited to: causal 
inference47; automation tools for bioequivalence assessment48 or 
facilitating product specific guidance49; business intelligence to 
predict submissions of abbreviated new drug applications50,51; 
regulatory equivalence assessment for complex particle size dis-
tribution52; and multivariate analysis methods to facilitate active 
pharmaceutical ingredient sameness assessment.53

Of note, the value of adopting AI/ML approaches to mine large 
and heterogenous datasets has been shown in recent regulatory 

applications focusing on the assessment of heterogeneous treat-
ment effect (HTE). The HTE analyses focus on examining varying 
treatment effects for individuals or subgroups in a population (e.g., 
for personalized medicine). For example, Gong et al.47 developed 
a causal forest HTE method and evaluated its performance against 
the conventional two-step method by simulating scenarios with 
different levels of complexity. Causal forest outperformed the con-
ventional method, especially when data were complex (e.g., non-
linear) and high dimensional, thus revealing a promising venue to 
advance analytical solutions for real-world HTE analyses.

PART 2: EXPLAINABLE ARTIFICIAL INTELLIGENCE AND ITS 
APPLICATIONS IN DISEASE PROGRESSION MODELING
In the previous section, we highlighted the evolution of ML as a 
tool, assistant, and partner for supporting decision making and 
advancing drug development at multiple levels. However, as ML 
models become more complex, it can become increasingly diffi-
cult to understand how certain decisions or predictions are made. 
Explainable artificial intelligence (XAI) aims to address ML mod-
els interpretability54 by incorporating human-understandable ex-
planations to output results. As shown in Figure 3, XAI can be 
classified into model-specific and model-agnostic approaches.54 
Model-specific approaches are tailored to a specific ML model 
and leverage its structure or logic to generate explanations that 
are then dependent on the model’s design or implementation. For 
example, decision trees are model-specific methods that provide 
interpretable predictions based on a series of binary rules that 
split the input space into regions.55 On the other hand, model-
agnostic approaches can be applied to any ML model, regardless 
of its architecture or structure. For example, Local Interpretable 
Model-agnostic Explanations (LIME)56 and SHapley Additive ex-
Planations (SHAP)57 are well known and commonly used model-
agnostic methods that provide measures of the importance or 
contribution of input features to the model predictions. Another 
key aspect of XAI is the use of visualization to help the users 
comprehend how ML model predictions are made. As an exam-
ple, heat maps can be used to visualize the important features of a 
model, and decision trees can show how a model makes decisions 
based on different inputs.

Applications of XAI are of great importance in the field of drug 
development and clinical quantitative pharmacology, because 
model-informed decisions can have significant impact. Thus, hav-
ing interpretable and explainable predictions becomes critical in 
order to build trust and meet fair and ethical principles. In this sec-
tion, we present a few examples recently presented in the literature.

XAI-enabled advancements in disease progression modeling
Disease progression modeling (DPM) focuses on using patient 
characteristics and pathophysiologic information to quantita-
tively describe longitudinal changes in the disease trajectory as a 
function of time.58 Given the increasing importance of DPM in 
supporting drug development, the IQ DPM working group has 
performed an industry-wide survey and published a white paper to 
summarize findings on its use.59 Currently, DPM is mainly used 
for internal decision making and helping to inform clinical trial 
design, rather than in regulatory decision making where guidance 
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on best practices is sought. It has also been highlighted that AI/
ML offers an exceptional opportunity to integrate large, multi-
dimensional data and enable precision medicine development. 
Additionally, applying XAI like SHAP can help by providing 
novel insights into the underlying mechanisms and factors of dis-
ease progression, including latent factors and temporal dynamics 
of disease stages.

For instance, Basu et al.60 used an explainable ML approach 
to predict future disease activity in patients with multiple sclero-
sis (MS) and identify the most predictive covariates. The analysis 

was conducted on a pooled population of 1,935 patients enrolled 
in 3 cladribine phase III clinical trials with different outcomes. 
Gradient boosting and SHAP methods were used to identify 
patients’ covariates for the early prediction of disease activity, in-
cluding patient baseline characteristics, longitudinal magnetic res-
onance imaging readouts, neurological, and laboratory measures. 
The value of incorporating XAI, such as SHAP, with complex 
nonlinear ML models clearly stands out in this work to enable an 
efficient assessment of covariates importance and contribution to 
model predictions at the population and individual patient levels, 

Figure 3  Example of utility of XAI methods to provide interpretable explanations of ML model predictions in order to more transparently inform 
clinical pharmacology decisions. eGFR, estimated glomerular filtration rate; LIME, Local Interpretable Model-agnostic Explanations; SHAP, 
SHapley Additive exPlanations; XAI, Explainable Artificial Intelligence.

Figure 4  Leveraging modern NLP techniques to streamline and improve the efficiency of knowledge discovery and data extraction from 
biomedical literature, in order to aid MID3. LLM, large language model; MBMA, Model-Based Meta-Analysis; MID3, model-informed drug 
discovery and development; NLP, Natural Language Processing; PD, pharmacodynamic; PK, pharmacokinetic.
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by exploiting typical SHAP plots (e.g., feature importance, sum-
mary plot, and dependence plots). The most predictive covariates 
for early identification of disease activity in patients were found 
to be treatment, higher number of new combined unique active 
lesion count, higher number of new T1 hypointense black holes, 
and higher age-related MS severity score. Interestingly, investiga-
tions of SHAP dependence plot for treatment revealed an exact 
match with cladribine exposure-response relationship derived from 
a population repeated time-to-event model of qualifying relapsed 
previously developed in a more conventional PMx setting.61 These 
results are supportive of the use AI/ML to address model-informed 
drug development and clinically focused questions integrating 
multimodal and heterogenous data as well multiple end points. 
This analysis improves understanding of the mechanism of onset 
of disease activity in patients with MS by allowing early identifi-
cation in clinical settings and additionally enabling better patient 
monitoring and treatment planning.

Although various approaches exist for DPM (ranging from em-
pirical to quantitative systems modeling) informed either by data 
alone and/or underlying disease biology,59 AI/ML offers the po-
tential to improve the predictivity of DPM models.62,63 Although 
AI/ML approaches are well-suited for identifying patterns from 
complex data, it has been argued that they lack the ability to incor-
porate pharmacologic principles and drug-specific information.58 
However, as discussed earlier in the paper (part 1), recent devel-
opments in neural-ODE64 have demonstrated the construction of 
pharmacology-informed neural network (PINN) architectures20 
and how they can be applied to DPM in geographic atrophy and 
oncology.62 In particular, rather than identifying models that sim-
ply describe the longitudinal data, these neural-ODE models use 
the concept of learning autonomous dynamic systems from the 
disease trajectories. Furthermore, such PINN architectures consist 
of an encoder and a decoder network, with an information bottle-
neck in between. It has been demonstrated that dynamic system 
techniques can be used to visualize and understand the decoder 
that has been learned from data; furthermore, in oncology DPM, 
the individual patient “metrics” available at the model bottleneck 
can enable the interpretation of which aspects of the tumor dy-
namics profile are used for survival prediction.62

Unleashing the full potential of XAI
Although XAI has the potential to alleviate the black-box nature 
of complex ML models, several challenges still lie ahead to un-
leash XAI’s full potential. The need for standardized definitions 
of explainability, communicating the results to non-technical 
audiences, as well as integrating explainability into the design of 
ML systems are among the major areas for further work.65,66 In 
fact, XAI requires combining human intuition and systematic 
thinking with the ability of ML to process vast amounts of data. 
Scientific machine learning is one such approach where domain 
knowledge is coupled to flexible ML techniques in the initial 
framework design (also termed glass-box) to improve both accu-
racy and explainability,67 but it requires more expertise to cre-
ate. The transparency of ML algorithms is closely linked to their 
explainability, and by providing clarity to the model’s internal 
workings it can instill greater confidence among stakeholders in 

the reliability and validity of the model’s outputs.68 However, ex-
plainable ML also involves ensuring ethical and legal principles 
are met.69 Collaboration among data scientists, clinical pharma-
cologists, clinicians, legal, and ethical experts is necessary to de-
velop accurate and XAI systems.

PART 3: NLP IN QUANTITATIVE PHARMACOLOGY MODELING
The exponential growth of biomedical and clinical knowledge 
stored in natural language can be overwhelming for scientists, 
hindering their ability to utilize the information effectively and 
efficiently. NLP is a powerful tool that can revolutionize drug 
development by extracting and analyzing information from the 
vast amount of biomedical literature. Traditional NLP heavily 
focuses on methods that analyze texts based on key words, such 
as the tools that were developed to drive PubMed searches. In 
the past few years, NLP has been revolutionized by DL meth-
ods, such as the transformer architecture70 and by the very re-
cent development of large language models (LLMs), such as the 
ChatGPT and GPT-4. These modern NLP tools can automate 
the identification of relevant papers, extract key information and 
causal relationships, generate natural-sounding text almost in-
distinguishable from human-written text, and summarize struc-
tured data from text.

Biomedical literature requires domain-specific models to be 
trained on specialized corpus and text data. Several biomedical and 
clinical domain-specific LLMs have been developed in the past few 
years, such as PubMedBERT,71 BioBERT,72 Med-BERT BERT,73 
and ClinicalBERT.74 Recently, Microsoft released the BioGPT,75 
which is a more advanced domain-specific generative transformer 
language model pretrained on large scale biomedical literature, 
and represents the state-of-the-art development in the field. These 
LLMs have demonstrated exceptional performance on various 
biomedical NLP tasks, such as relation extraction,75,76 question 
answering,77 and document classification.78 These AI models have 
great potential in drug research and development applications, in-
cluding understanding underlying biological mechanisms for drug 
efficacy and toxicity and identifying drug targets or predicting 
drug interactions. By leveraging these advancements, researchers 
can more efficiently implement rational drug designs and increase 
the probability of success.

Using NLP, particularly LLMs, in drug development applica-
tions presents practical challenges, because the large size of the 
models come with high costs (e.g., the training of the GPT-4 
model with hundreds of billions of parameters costs over $100 M). 
In practice, LLMs are mostly used as foundational models to 
power many specific applications and can be fine-tuned using in-
house data or external plugins. However, data security risks must 
be considered when exposing such models or external plugins to in-
ternal proprietary patient data. To address data security concerns, 
in-house implementations of such LLMs or their smaller special-
ized versions may provide feasible alternative options. In-house 
models can take full advantage of the proprietary data behind the 
firewall to generate more specific outputs to the internal scientists. 
Furthermore, as evident from recent development of AutoGPT, 
complete automated use of these “intelligent” AI machines with-
out human supervision can generate wrong results which can be 
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risky in drug development. We believe the “human-in-the-loop” 
concept79 should be considered in any AI-aided drug development.

We illustrate in Figure 4 the methodologies used in NLP-
enabled literature search and selection to showcase their potential 
application areas within the context of MID3. In this section, we 
review the methodologies and provide examples of NLP-enabled 
literature search and selection for model-based meta-analysis 
(MBMA) and data extraction for PK/PD analysis and highlight 
the use of NLP to construct a detailed knowledge graph of disease 
biology from public literature.

NLP-enabled MBMA
Identifying and extracting relevant data from the biomedical liter-
ature for MBMA is a key PMx task in drug development; however, 
its workflow is typically a manual, labor intensive, and disease 
domain-expert dependent process. It involves initial keyword-
based searches on public literature databases, such as PubMed, 
followed by selecting the most relevant papers and extracting data 
according to Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines80; see Figure 5 for an 
illustration. The final pool may only contain ~ 10–20% literature 
from the initial search results, thus, resulting in an inefficient and 
unscalable process. As indicated in Figure 5, NLP approaches 
present several opportunities for improving MBMA.

One recent approach proposes a pipeline81 based on the 
PubMedBERT,71 which is a transformer-based biomedical LLM 
trained on the whole PubMed dataset. PubMedBERT generates a 
tokenized vector representation for each input paper abstract. An 

additional in-house model81 of three-layer ranking NN was trained 
on top of the PubMedBERT output vector to rank each paper for 
its relevance to MBMA. Whereas the PubMedBERT model pa-
rameters are untouched, the 3-layer ranking NN was trained using 
an internally labeled MBMA dataset consisting of 14 different dis-
eases, with over 28,000 papers from initial PubMed searches, and 
around 3,000 human selected papers in the final MBMA analyses. 
The ranking NN was trained to distinguish the human-selected pa-
pers from the rest and generalize the ranking to unseen diseases and 
future publications. The pipeline achieved an overall mean recall 
rate of 85% and 77% along with an overall mean precision of 31% 
and 28% on the task of predicting unseen diseases and future pub-
lications, respectively. Similar performance was achieved on a new 
MBMA effort for severe acute respiratory syndrome-coronavirus 
2 drug development, a disease area that was not represented in 
the initial dataset. The authors suggest that such an NLP-MBMA 
pipeline can dramatically reduce the cost (from ~ 5 FTE months to 
a few dollars of computing cost) and increase the efficiency (from 
months to a few minutes) of the MBMA process by automatizing 
literature selection and streamlining the whole process. Higher 
performance could be expected with a tool built into a “human-
in-the-loop” system and with the integration of newly available AI 
tools, such as ChatGPT.

NLP-enabled early clinical development
NLP technology can help extract PK/PD and clinical related 
data from biomedical literature. A web-based tool using NLP 
techniques has been implemented82 to extract PK/PD data from 
published literature83 with apps for Named Entity Recognition 

Figure 5  The workflow for MBMA consists of a number of manual, labor intensive, and disease domain dependent tasks to identify and select 
articles from scientific and medical literature. The arrows shown in orange indicate steps with NLP that have the largest potential impacts. AI, 
artificial intelligence; MBMA, Model-Based Meta-Analysis; NLP, Natural Language Processing.
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(NER) relationship extraction available online. In this study, the 
authors developed an ML-based method to automatically identify 
and characterize scientific publications containing in vivo PK pa-
rameters, with a dataset of 4,792 PubMed publications labeled by 
experts. The final pipeline utilized unigram features and mean 
pooling of BioBERT embeddings, achieving an F1 score of 83.8% 
on the test set, and identified over 121,000 relevant PubMed pub-
lications. The resulting repository is accessible via a public web 
interface (https://app.pkpdai.com) and aims to expedite PK data 
search and comparison, thus aiding in ADME dataset curation.

Population, Intervention, Comparison, Outcome and Study 
Design (PICOS) data and clinical information are identified and 
extracted from textual sources. The effectiveness of NLP tech-
niques has been demonstrated in automatically extracting PICOS 
elements from unstructured text.84 In addition, NLP has been ap-
plied to clinical data extraction, including medication and adverse 
event extraction, to assist pharmacovigilance and adverse drug 
event monitoring.85,86

Although the use of NLP to extract clinical data from published 
literature has the potential to significantly enhance the efficiency 
and accuracy of evidence-based medicine and clinical research, sig-
nificant challenges remain, including the need for high-quality an-
notated data, domain-specific knowledge, the potential for bias in 
the training data and ultimately the need to identify and extract the 
relevant data for subsequent modeling. Further developments in 
NLP techniques addressing these challenges can enable the wide-
spread adoption of NLP in biomedical and drug research.

NLP-enabled knowledge graphs
In recent years, the integration of NLP techniques has revolu-
tionized the construction of biomedical knowledge graphs (KGs), 
paving the way for its diverse applications in drug discovery and 
development. Santos et al.87 used a KG to interpret clinical pro-
teomics data for drug target identification and drug repurposing. 
Erdengasileng et al.88 proposed an approach to identify potential 
drug–drug interactions with high accuracy. Zhang et al.89 devel-
oped MatchMixeR, a cross-platform normalization method for 
gene expression data integration to identify new drug targets and 
potential drug combinations. BioKDE, a KG-based biomedical 
search engine and knowledge discovery platform that integrates 
data from various biomedical databases, including PubMed, Gene 
Ontology, and Reactome, can be used to identify potential drug 
targets based on their biological functions and interactions with 
other molecules, as well as drug repurposing for different dis-
eases.90 Additionally, NLP-based KGs can be used to identify po-
tential off-target effects of drugs, thereby helping to develop safer 
and more effective drugs.

Construction of biomedical KGs requires accurate NER and 
reliable relation extraction. Recent advancements in NLP enabled 
the extraction of valuable information from biomedical text with 
high accuracy, despite the challenges in identifying and classifying 
different entities (e.g., genes, diseases, drugs, and proteins). Tian 
et al.91 proposed a transformer-based approach for NER in clin-
ical trial eligibility criteria, which outperformed traditional ML 
approaches.

NLP is important for relation extraction in constructing KGs 
reflective of the underlying biological mechanisms in a structured 
manner (e.g., drug-disease and gene-disease relationships, and 
protein–protein interactions). Yu et al.92 proposed a Bayesian 
network structure learning method called GRASP, which uses 
an adaptive sequential Monte Carlo approach to infer the causal 
relationships between genes. GRASP was able to identify causal 
relationships between genes that were not previously known, 
demonstrating its potential in constructing the biomedical KG. 
Looking ahead, LLM NLP applications are poised to become in-
creasingly important in future drug development. However, it is 
important to note that these models should be integrated with a 
“human-in-the-loop” approach, where human scientists are strate-
gically placed to validate and make crucial decisions. This point will 
be further emphasized in the Conclusion and Recommendation 
section of this paper.

PART 4: AI/ML UTILIZATION IN DRUG DISCOVERY
In the 1990s, the availability of biological reagents and liquid chro-
matography mass spectrometry dramatically reduced the attrition 
of small molecule drugs due to PK considerations. Currently, attri-
tion due to poor clinical exposure is rare, with preclinical toxicol-
ogy, clinical intolerability, or insufficient efficacy being the major 
sources of attrition. Reagents, such as microsomes, cryopreserved 
hepatocytes, recombinant drug metabolizing enzymes, and cells 
overexpressing specific transporters, have enabled drug metabo-
lism and PK departments to generate large quantities of in vitro 
ADME data over the last 15–20 years. These data serve two spe-
cific functions: first, in vitro data related to metabolic stability, 
plasma protein binding, permeability, efflux, and CYP inhibition 
can be used for the design (i.e., prior to synthesis) of small mol-
ecules with superior ADME properties (Figure 6, design cycle), 
along with other parameters, such as biochemical and cellular po-
tency and selectivity data; second, archived data can be used to 
build ML models to predict these properties (Figure 6, In silico 
optimization).

In silico ML models to predict these in vitro ADME properties, 
as well as physicochemical properties, such as lipophilicity and sol-
ubility, have been available and impactful for > 15 years (Figure 6, 
multi-parameter optimization); generally, the models use RF or 
support vector machine approaches and, more recently, deep NNs.

A recent publication by the IQ In Silico Working Group93 
showed that the availability of a metabolic stability model at 
Genentech more than doubled the percentage of compounds that 
are metabolically stable. Similarly, the availability of a solubil-
ity model at AstraZeneca and a time-dependent CYP inhibition 
model at Eli Lilly significantly increased the percentage of com-
pounds with desirable properties.93 As the amount of data contin-
ues to increase steadily, the quality of the predictions as well as the 
domain of applicability (DA) will improve, and models to predict 
in vivo PK in preclinical species as well as properties of large mol-
ecules have become available recently. Progress has also been made 
in the prediction of potency and toxicity as well. Moreover, many 
of these models can be used prior to synthesis to increase the odds 
of success and the efficiency of the drug discovery process.
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Key considerations for building models in drug discovery
There are more abundant and richer datasets now than ever before 
to make improved predictions about a compound’s ADME, PK, 
and toxicity properties. However, when building and using AI/
ML models, it is critical to understand what type of in silico model 
should be used to solve a particular critical issue in drug discovery, 
and what confidence is attached to the model’s predictions based 
on the DA and the quality of the input data.

Open access, online databases, such as ChEMBL and PubChem, 
can be used to augment experimental data, but these may contain 
errors, including chemical structures and biological properties, or 
show high variability due to the use of different experimental pro-
tocols. Thus, data curation is needed to ensure high-quality input 
data and should include chemical structure and experimental set-
tings. The databases of large pharmaceutical companies are often 
reliable sources of high-quality data.

Once an ML model has been built to predict a particular in vitro 
or in vivo end point of relevance to a drug discovery program, it 
is necessary to define the DA. The DA is a highly discussed and 
well-studied theoretical region of physicochemical, structural, or 
biological space that surrounds a model’s descriptors and response, 
and it is used to estimate the uncertainty in a model’s prediction 
of new compound properties based on the similarity to the com-
pounds used in the training/test set. New methods have been de-
veloped to help with DA analysis, but no AI/ML model should be 
a static model, and the DA will change or broaden over time.

A clear understanding of the limitations and variability inher-
ent in the experimental data used to build an ML model, and the 
associated DA, should help determine what model to use to help 
answer a specific question in a drug discovery program. The deci-
sion to use a local or global in silico model94 depends on how much 
data are available for model construction and how generalizable 

the problem or end point is. Global models attempt to include in-
formation from later stages of drug discovery into earlier stages, are 
more practical, and enable extrapolation beyond the current data. 
If the global model is updated regularly, it is also possible to in-
corporate relevant local data in a timely manner. Currently, global 
over local models are preferred given comparable performance.94 
Choosing a local model can be impractical in the fast-moving drug 
discovery process.

When it comes to decision making, the impact and performance 
of AI/ML models can vary greatly, and their outcome is usually 
combined with additional evidence generated in early drug discov-
ery programs. It is essential to carefully consider the DA and the 
quality of data used to the build the in silico model when determin-
ing the weight given to the model in the decision process. The suc-
cess metric for these models should not be their accuracy, but their 
ability to increase the probability of success for advancing the drug 
discovery project and filling a gap in the decision-making process. 
Collaboration with ADME scientists, medicinal chemists, and 
toxicologists is essential in understanding the gap in knowledge 
and the model applicability. The goal is to bring together different 
relevant models across disciplines and refine optimal compound 
properties all the way into the clinic.

Advancements in AI/ML-enabled drug discovery
AI/ML models used for predicting ADME properties have dra-
matically improved and they are now being used to predict in vivo 
PK in preclinical species as well as in vitro ADME end points. 
This has led to a preference for advancing candidate molecules 
with desirable in silico predicted properties as opposed to solely 
relying on more resource-intensive experimental studies (e.g., P-gp 
efflux). New methods, such as multitask deep NNs and transfer 
learning, are likely to further improve in vitro and in vivo end 

Figure 6  How in silico models can enhance the design cycle in drug discovery (left) resulting in better and quicker multi-parameter optimization 
(right). CL, clearance; PPB, plasma protein binding.
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point predictions and shorten the time required to reach key com-
pound decision points. In recent years, progress has been made 
in utilizing AI/ML for toxicity and large molecule drug develop-
ment, which have lagged the use of AI/ML for predicting ADME 
properties for small molecular entities.

For toxicity predictions, it is key to understand the therapeutic 
index of a compound, and this requires both improved human PK 
and PD (related to the pathology of a disease) drug discovery pre-
dictions. Advances in AI/ML image analysis are leading to automa-
tion in pathology and an increased application of more advanced 
imaging techniques to understand biology. For human PK predic-
tions, recent proof-of-concept work95 has shown how AI/ML can 
be used to predict specific in vivo human PK parameters, and can 
eventually be used to help design compounds with more optimal 
PK properties. Likely, more AI/ML model development and use 
for predicting toxic end points will increase in the near future given 
new, faster, and more data rich technologies, such as multiplexed 
assays and multi-omics, as well as the regulatory requirement for 
SEND-compliant data. AI/ML methods are likely the best fit for 
rapidly integrating and analyzing these different data types and ul-
timately better understanding toxic drug effects.

Although antibody drug development has historically relied on 
more laboratory-based methods, recent advances in microfluidics 
technologies and next-generation sequencing have increased the 
data available for antibody identification, optimization, and de 
novo design in recent years.96–98 For example, work led by Prescient 
Design (Genentech) has shown how large self-supervised “deep 
manifold sampling” can help produce antibody binder sequences 
that are stable, well-expressed, and with good drug-like proper-
ties.99 In their work, as sequences are generated, data are fed back 
into an active learning framework, which selects sequences that 
balance model improvement and model exploitation. Future work 
in generating synthetic antibodies using DL can include integra-
tion with high throughput biology methods tuned to antibody 
discovery, as well as new methods to integrate structure and ML 
frameworks.

In silico models have been successfully incorporated in the drug 
discovery process due to their improved quality and DA, with fur-
ther possibilities to progress through deep NNs in combination 
with transfer learning and a multitask architecture. Nevertheless, 
there are limitations if the synthetic efforts expand into previously 
unexplored chemical space associated with, for example, bifunc-
tional degraders and macrocyclic peptides, and reliable prediction 
of potency (e.g., virtual screening) and (in vivo) toxicology is still 
evolving. Multiparameter optimization tools have been developed, 
but the scoring function still requires user input. The adoption of 
in silico models is variable, and a user-friendly interface that is incor-
porated effectively in the corporate computational infrastructure 
will aid its implementation. Collaboration between computational 
scientists and experimentalists is necessary to enable “augmented 
design” to enhance the drug discovery process.

CONCLUSIONS AND RECOMMENDATIONS
The field of AI/ML is rapidly evolving and there are significant 
advancements being made to support quantitative modeling for 
drug discovery and development at various levels (see Figure 2). 

Effective collaboration among industry partners, academia, and 
regulatory agencies is essential to fully understand and harness its 
potential. In pursuit of this goal, we have organized workshops to 
enable scientific exchange between practitioners and compiled our 
findings in this white paper. Although AI/ML can unlock many 
opportunities, it is important to be cautious when using these ad-
vanced algorithms to avoid deriving biased and nongeneralizable 
conclusions from data. Drawing on valuable inputs from industry, 
academia, and the FDA, we offer a set of guidelines and recom-
mendations for the appropriate utilization of AI/ML in quanti-
tative modeling:

•	 Define the context-of-use (COU) and utilize risk-informed 
credibility assessment framework for AI/ML applications. 
Similar to other quantitative models used to support drug dis-
covery and development, the use of AI/ML should also undergo 
credibility assessment depending on the COU,100 whether that 
be replacement of a computationally expensive covariate search, 
which has low decision consequence, or as part of the patient 
enrichment strategy which would have higher decision con-
sequence. The level of model validation would depend on the 
model risk entailed, and the appropriate performance metrics 
may depend on the COU as well.

•	 Beware of potential overfitting and hence the difference in pre-
dictions and/or estimates obtained using the training versus the 
test sets. Although AI/ML models have high expressive power, 
this comes at the expense of overfitting or memorization. The 
commonly applied approach of evaluating PMx models on the 
whole dataset and drawing inferences thereof should be recon-
sidered in the AI/ML setting. In particular, even if the training 
and test sets come from the same distribution (for instance, in 
a cross-validation setting), overfitting may result in disparate 
findings between the training and test sets.101

•	 Ensure the AI/ML model exhibits sufficient generalizability 
outside of the training distribution, depending on its COU. 
Due to the expressive power (i.e., the ability to describe a wide 
variety of quantitative relationships) of AI/ML models, one can 
provide an accurate description of the existing data distribution 
while losing the ability to perform well for an external test set 
that is outside of the training distribution. For high-risk applica-
tions where generalizability outside of the training distribution 
is important, the ability of the model to predict outside of the 
training domain should be appropriately assessed and defined.

•	 To ensure the reproducibility of AI/ML models, it is essential 
to implement version control throughout the model’s lifecycle. 
A defining feature of AI/ML models is their capacity to en-
hance performance through continuous learning from the ac-
cumulation of data. Consequently, these models often require 
periodic or even continuous updates, making version control 
a critical aspect of the development process. It is important to 
note that version control goes beyond merely creating snapshots 
of the model architecture and hyperparameters; it also involves 
referencing the training data used to generate the model.

•	 If possible, apply XAI methods and/or choose model formu-
lations that enhance transparency and explainability. AI/ML 
models may entail a large number of decision trees or trainable 
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weights, which are not easily interpretable. However, there are 
various approaches to improve model explainability. One path 
is to use XAI techniques like SHAP57 and LIME56 to quantify 
how the input features impact model predictions. By evaluat-
ing which are the most predictive features and how they impact 
the predictions, one can eliminate spurious effects from the 
analysis. For instance, if data has missing values that fall under 
the category of Missing Not At Random,102 one needs to en-
sure that the missingness pattern is not used unintentionally 
in the ML model. There are also explicit ways to improve ex-
plainability via the choice of model formulation: for instance, 
encoder-decoder NN architectures perform data abstraction by 
compressing them through a “bottleneck” layer.62 By creating 
low dimensional embeddings of data that exhibit parsimony in 
explaining patient variability, such methodologies can enhance 
the ability of the model to be comprehended.

•	 If possible, incorporate relevant domain concepts into the AI/ML 
formalisms to enhance its generalizability. One key difference 
in human constructed models versus AI/ML models is that the 
former often incorporates key principles that are well-accepted 
within the scientific domain of interest, for instance, physics 
or pharmacology, whereas the latter is often purely data driven. 
However, building AI/ML models that are physics- and/or 
pharmacology-informed can significantly improve its generaliz-
ability. An example is geometric DL,103 which leverages concepts, 
such as invariance and equivariance, to ensure that the AI/ML 
model exhibits symmetries present in the physical tasks at hand. 
Approaches such as scientific ML104 and pharmacology-informed 
neural networks62 are other proposals that attempt to reconcile 
domain concepts with the data-driven nature of AI/ML.

•	 Quantify the uncertainty of the AI/ML model predictions via 
performing appropriate bootstrap. Although parameter and 
prediction uncertainty may often be easily quantifiable in an 
analytical fashion in empirical PMx and statistical models, it is 
not so for AI/ML models. Nevertheless, confidence intervals of 
AI/ML model predictions can still be computed via bootstraps 
(i.e., sampling-with-replacement) or other approximations, such 
as performing dropouts in the context of NNs.105 Quantifying 
uncertainty can help better assess the quality of the predictions 
and how well they are supported by the existing data.

•	 If possible, encode causality relationships into the AI/ML 
model. In contrast to applications of AI/ML in other technical 
fields, for pharmacology/toxicology applications there are often 
explicit causal assumptions being made among dose, PK, and ef-
ficacy/safety. If the model architecture does not explicitly take 
these into account, it is not guaranteed that the AI/ML model 
would extrapolate well outside of the training domain.19,62

•	 Draw a causal diagram to determine which variables should go 
into the AI/ML model and which should not. Whereas AI/ML 
models can incorporate many more explanatory variables than 
alternative approaches, using them can create the temptation of 
incorporating all available variables. However, for causal infer-
ence applications, it is well-recognized that the use of AI/ML 
algorithms by themselves is not a replacement for the need to 
consider which variables should be included (e.g., as confound-
ers) or left out (e.g., as colliders).101,106,107

•	 If possible, use synthetic dataset to demonstrate the soundness 
of the proposed AI/ML workflow. In comparison to workflows 
for PMx and statistical models, AI/ML methodologies can en-
tail multiple computational steps, including hyperparameter 
tuning, model training, model evaluation with validation and 
test sets, estimation of confidence intervals, and feature impor-
tance attributions. If proper care is not taken in the sequence of 
steps, one can unintentionally introduce biases into the model 
predictions and/or inferences, or over- and underestimate the 
confidence intervals.101 By testing the planned AI/ML work-
flow on appropriate synthetic data, one may uncover potential 
flaws within the model generation process.

•	 Involve “human-in-the-loop” where relevant. Depending on 
the COU, consideration should be given as to whether and how 
human scientists should be strategically placed to validate AI/
ML model findings and make crucial decisions.
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